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ABSTRACT

This paper presents some simu-
lation results of ATR’s new CAM-
Brain Machine (CBM), a piece of
FPGA based hardware to be op-
erational by the summer of 1998,
which will update 3D cellular au-
tomata (CA) cells at the incredible
rate of 100 Billion a second, mak-
ing possible the evolution of a CA
based neural net module in about
a second (i.e. a complete run of
a genetic algorithm, with tens of
thousands of neural circuit growths
and fitness evaluations). Since the
ultimate objective of ATR’s CAM-
Brain Project is the realization of
neural networks modules contain-
ing some billion artificial neurons
to run in real time, speed is a crit-
ical issue. The main objective of
the experiments presented in this
paper was to gain insights and ex-
perience concerning the evolvabil-
ity of the CoDi-1Bit model (a sim-
plified version of the previous CoDi
model that allows 1 bit neural sig-
naling, thus enabling its implemen-
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tation in FPGA based hardware)
and the new CBM machine. As a
subgoal, and no less important, we
have investigated some representa-
tion issues, namely how to inter-
pret the binary input and output
signals of neural network modules.
This issue is fundamental, since it
strongly influences the evolvabil-
ity and performance of the whole
CAM-Brain system.

1 Introduction

The CAM-Brain Project at ATR Labs aims to construct
a large-scale brain-like neural network system. If the
project succeeds and our expectations are fulfilled, these
“artificial brains” will have a large number of potential
applications in several different fields, from ’smart’ do-
mestic appliances to speech processing and robot control.
We believe that to realize a system that possesses a sim-
ilar level of functionality and structural complexity as
real biological brains, the most appropriate way, if not
the only way, is to evolve them, as happened in nature.

The fundamental approach of the CAM-Brain Project
is the growth/evolution of large-scale neural networks.
Since the dawn of the Project (de Garis 1994), Cellular
Automata (CA) have been chosen as the medium to grow
the neural networks. CAs meet the requirements of gen-
erality and especially scalability, necessary for simulat-
ing large-scale systems. Moreover, the parallel nature of
CAs allows its transposition into hardware, where higher
speeds can be achieved. The CA based neural model ini-
tially used (de Garis 1996) suffered from an explosion of



states and transition rules that blocked any attempt to
implement it in hardware. Due to this problem, a new
model called “CoDi” (from COllect and Dlstribute) was
proposed (Gers and de Garis 1996), greatly simplifying
the system and for the first time allowing the implemen-
tation of the system in special hardware, namely XC6264
FPGAs, which update the CA space at 100 billion cells
a second, and will be able to perform a complete run of
a genetic algorithm (with 10,000s of circuit growths and
evaluations) in about a second.

Advances in hardware technology led to the develop-
ment of devices called Field Programmable Gate-Arrays
(FPGAs). FPGAs are hardware devices that can be re-
configured in run-time to perform different logic func-
tions, wedding the flexibility of software with the speeds
of hardware. This motivated the design/construction of
a specific computer, called CAM-Brain Machine (CBM)
(Korkin et al. 1997), for the evolution of neural networks
under the CoDi model. The CBM will grow 16.000 neu-
ral network modules of roughly 10.000 CA cells each, up-
dating 100 billion cells/second, a speedup of 500 times
compared to the MIT machine “CAMS8” (Toffoli and
Margolus 1987) that the Project had been using pre-
viously to update CA cells quickly.

The experiments reported in this paper had as their
main objective to allow us to gain some insights and ideas
concerning the evolvability of the CoDi-1Bit CA based
neural net model and the CBM. The experiments were
not exhaustively performed. The current simulations
were executed in conventional workstations and laptops
and often took days until convergence was achieved. The
hardware version of the CBM will dramatically decrease
these times, thus facilitating a more complete analysis.
Also, we began tackling an issue of great importance,
namely, how to interpret the signals that come from the
neural networks modules? The CoDi-1Bit model evolves
neural networks whose signals that traverse the connec-
tions are digital, i.e. binary 0’s and 1’s. The question
is, what kind of representations should be used in or-
der to extract useful information from the signals output
by the neural networks modules. Simple representation
schemes have been tried, with mixed results - some good,
some bad. Also, we attempted to apply the theory pre-
sented in the book ”Spikes: exploring the neural code”
(Rieke et al. 1997), which introduces a novel hypothesis
to explain how sensory signals are encoded in the action
potentials that traverse natural neural systems. The ini-
tial results obtained are encouraging and indicate that a
”spike interval coding” representation might be suitable
to be used with the CoDi model.

2 The CoDi-1 Bit Cellular Au-

tomata Based Neural Net

Model

This section gives an overview of the “CoDi”neural net
model implemented in the CAM-Brain Machine hard-
ware. The model is called “CoDi” due to the “COllect
and DIstribute” nature of its neural signals. CoDi is
a simplified CA-based neural network model developed
at ATR in the summer of 1996 with two goals in mind.
One was to make neural network functioning much sim-
pler compared to the older CAM-Brain model developed
in 1993 and 1994 (de Garis 1993, de Garis 1994), so as
to be able to implement the model directly in electron-
ics and thus to evolve neural net modules at electronic
speeds.

In order to evolve one neural network module, a popu-
lation of modules is run through a genetic algorithm for
several hundred generations. Each module evaluation
consists of growing a new set of axonic and dendritic
trees which interconnect the neurons in the 3D cellular
automata space, then running the module to evaluate its
performance (fitness).

The CoDi model (Gers and de Garis 1996) operates as
a 3D cellular automata. Each cell is a cube which has six
neighbor cells, one for each of its faces. By loading a dif-
ferent phenotype code into a cell, it can be reconfigured
as a neuron, an axon, or a dendrite. Neurons are config-
urable on a coarser grid, namely one per block of 2*%2*3
CA cells. In a neuron cell, five (of its six) connections
are dendritic inputs, and one is an axonic output. An
accumulator sums incoming signals and fires an output
signal when a threshold is exceeded. Each of the inputs
can perform an inhibitory or an excitatory function (de-
pending on the neuron’s chromosome) and either adds
to or subtracts from the accumulator. The neuron cell’s
output (axon) can be oriented in 6 different ways in the
3D space.

A dendrite cell also has maximum five inputs and one
output, to COllect signals from other cells. The incom-
ing signals are passed to the output according to a given
function. For instance, if the logic OR function is used,
the output is active whenever at least one of the inputs
is active. If an XOR function is used, the output is ac-
tive when only a single input is active. Two or more
active inputs block each other. The XOR dendrite is
more plausible from the biological point of view. A sim-
ilar phenomenon occurs in real dendrites in animals. An
axon cell is the opposite of a dendrite. It has 1 input
and maximum 5 outputs, and DIstributes signals to its
neighbors.

Before the growth begins, the module space consists of
blank cells, which are used to grow new sets of dendritic
and axonic trees during the growth phase. Blank cells
perform no function in an evolved neural network.



As the growth starts, each neuron continuously sends
growth signals to the surrounding blank cells, alternat-
ing between “grow dendrite” (sent to the neuron’s den-
dritic connections) and “grow axon” (sent to the axonic
connection). A blank cell which receives a growth sig-
nal becomes a dendrite cell, or an axon cell, and fur-
ther propagates the growth signal, being continuously
sent by a neuron, to other blank cells. The direction
of the propagation is guided by the growth instructions
attached to the cell. These local instructions indicate
the directions that the growth signal should be propa-
gated to and consists of a bit for each face of the cube
cell. The growth signal is propagated to those directions
whose corresponding bit is set to 1 (except the direction
where the signal comes from).

This mechanism allows the growth of a complex 3D
system of branching dendritic and axonic trees, with each
tree having one neuron cell associated with it. The trees
can conduct signals between the neurons to perform com-
plex spatio-temporal functions. The end-product of the
growth phase is a phenotype bitstring which encodes the
type and spatial orientation of each cell.

3 CAM-Brain Machine (CBM)

The CAM-Brain Machine (CBM) was especially de-
signed to support the growth and signaling of neural net-
works built by the CoDi model in hardware. The CBM
should fulfill the needs for high speeds, when simulat-
ing large-scale binary neural networks, a necessary con-
dition when one is concerned with performing real-time
control. The hardware core is implemented in Xilinx’s
XC6264 FPGA chips, in which the neural networks will
actually grow. A host machine will provide the neces-
sary interface to interact with the hardware core. It is
planned that the CBM will be used to grow 16,000 neural
network modules, each with approximately 10,000 cells.
The modules will be organized into humanly defined ar-
chitectures, so that neural network modules will be in-
terconnected to form a functional unity. This machine
should be built by late summer of 1998, provided that the
chips are delivered on time. For a complete description
of the CBM, refer to (Korkin et al. 1997).

4 Some CBM Simulation Results

This section presents some CBM software simulation re-
sults using simple representation schemes. When one be-
gins evolving CoDi modules, one immediately becomes
conscious of the issue of representation. In other words,
what meanings should one give to the binary inputs
and outputs? We have considered 4 different represen-
tations. The first representation we tried was to con-
sider two output streams tapped from different points,
where each time one stream gave a pulse, a counter
was incremented, and each time the other stream gave

a pulse, the counter was decremented. This represen-
tation scheme was named ”Incrementor/Decrementor”
and we evolved a sinusoidal wave this way (See Fig.1).
The second representation we tried was what we call
“unary”, i.e. if there are N input/output neurons that
are firing at a given instant, then the module is said to
be in/outputting the number “N” at that instant. We
spent some time on the unary representation, because we
thought it might be a good candidate for the CBM. Its
advantage is that a different number can be in/output at
each clock tick, i.e. it is a “fast” representation, which
is important when building artificial brains containing
long chains of sequential modules, so as to minimize to-
tal reaction time. The third representation we tried was
“Gray code”, which did not work very well and was aban-
doned. Finally, we attempted to apply the theory of the
so called “spike interval coding”, in which information is
contained in the spacing between pulses. A pulse train
coming from a single output neuron can be convoluted
with an analog “filter function”, to give a highly efficient
means to code for complex time dependent analog out-
put (Rieke et al. 1997). In the context of the CBM, the
idea is to convolute an output series of 0-1 bits with a
digitized filter in order to get the output signal. The
next four subsections describe the experiments and the
results.

4.1 Incrementor/Decrementor
sentation

In this experiment we used a 16¥16%16 CA block, with
6 fixed inputs constantly firing at the input face, and 2
fixed position outputs at the opposite face. If the first
output bit By was a 1 and the second bit By was a 0, then
a fictitious counter was incremented by 1. If B; = 0 and
By = 1, then the counter was decremented by 1. Other
cases left the counter unchanged. An arbitrary sinusoid
amplitude and wavelength target shape was chosen that
the counter is supposed to follow as closely as possible,
with the counter value being plotted along the vertical y
axis, and the clock count being plotted along the horizon-
tal x axis. The circuit should evolve so that the outputs
B and B, change over time, such that the counter gives
the appropriate y values over time.

The fitness value was defined to be the inverse of the
sum of the squares of the differences between the de-
sired y values and the actual counter values. An in-
cremental or stepwise evolutionary approach was taken
that de Garis developed in 1990 (de Garis 1990), namely
that the evolution used several intermediate fitness def-
initions, where the resulting population of GA chromo-
somes evolved with fitness definition F' D¢, became the
starting generation of chromosomes with fitness defini-
tion F'Ds, etc. Often this approach gives better results
than using only one fitness definition. In the case of
the sinusoid, at first a quarter wavelength was evolved
(where the target sinusoid had an amplitude of 20 and
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a wavelength of 200 clock ticks), with the whole curve
shifted up by 30. The fitness measurement started after
20 clocks, at which point, the counter was set initially at
the value 30. After about 100 generations, the evolved
output followed the desired target within a few percent.
The resulting population became the starting popula-
tion for a second evolutionary phase where the aim was
to evolve a half sinusoid. Again, after a day, and several
hundred generations, the actual curve followed the tar-
get curve within a few percent. Two further steps were
used, to evolve a three-quarter wave and a full wave. The
three-quarter wave evolved as well as the previous two,
but the full wave did not quite get the actual curve to
return to the “base line” (set at 30). It looked as though
the limits of the evolvability of the 4K CA cell module
had been reached. An alternative fitness definition which
weighted the later clocks was attempted, but had no ef-
fect. Fig. 1 shows the result of the full sinusoid, both
target and actual output.

Sinusoid evolved with CoDi-1Bit model

0 2‘0 4‘0 6‘0 B‘D lll.lD 1;0 14‘\0
Figure 1  Full Sinusoid, incrementor/decrementor ap-

proach.

4.2 Unary Representation

The unary representation was expected to be less evolv-
able than a fixed output position representation. For
example, imagine we input 30 pulses distributed ran-
domly over the input surface, and that at each clock
tick, the random positions of the 30 input pulses can
change. (This is needed in case the unary output of one
module feeds directly into the correspondingly positioned
inputs of another unary module). The output positions
at the opposite face can also change randomly (only their
total number matters). Thus the unary representation
is highly stochastic. Could, nevertheless, a CoDi-1Bit
module evolve a desired time dependent unary output?
Fig. 2 shows such a case. The straight line is the tar-
get output. The spiky line is the actual output (unary)
over time. One can see that the unary representation is
not bad, but not perfect. It may be adequate for CAM-
Brain modules if accuracies do not need to be finer than
say within 10-20% error. Fig. 3 shows an experiment
which aimed to achieve the greatest total output count.
The greatest density of neurons in the CBM is one per

2*2 surface CA cells, so with a module of dimensions
24*24*16, means a maximum possible output of 12*¥12
= 144. Fig. 3 shows that the average maximum out-
put was about 108 and the average deviation about this
mean value was only about 3, i.e. a noise to signal ratio
of about 3%, which was considered to be quite good. We
then attempted to evolve a unary based sine curve, as
shown in Fig. 4 which was a bit scratchy, due to the
inevitable stochastic nature of the unary representation.

0 Z‘D 40 (;D B‘U léU 1%0 140
Figure 2 Obtained line and target line using unary rep-

resentation.

T
1501 Desired Level

Number of outputs

Figure 3 Maximum output experiment

The dotted line in Fig.4 represents the desired curve
and the continuous line is the output. The evolution
was performed incrementally. First, the first quarter of
the sine, then the first and second, etc. as in the incre-
mentor/decrementor experiment. Approximately 1000
generations were spent in each phase of the process.

Encouraged by the above moderate successes using
unary representation, some attempts were made to
evolve modules with controllable functions, e.g. an in-
verter. Using the same neural circuit, a unary input
of 20 was desired to result in a unary output of 60 and
vice versa. This circuit failed to evolve. Once the output
reached about 20 it just hovered there. Instead of 20—60
and 60—20, a milder form, 816 and 16—8 was tried.
This time the average output hovered around 12. We
tried evolving a damper switch. The input surface was
divided into two halves. In the right hand side, a unary
input of 16 was placed. In the left hand side, all 72 pos-
sible input neurons were all switched on constantly, or



0 2‘0 4‘0 6‘0 S‘D ll‘]O l;ﬂ 1410 1;0 JJ‘EB 200
Figure 4 Example of a sinusoidal signal output by a
neural network using the unary code.

all switched off constantly. If the switch was on (i.e. all
72 input neurons were firing) the output was supposed
to be 8. If the switch was off (all 72 input neurons were
off), the output was supposed to be 16. The output for
both cases (switch on and off) hovered around 11. In
the next experiment, the control (switch) input neurons
were distributed evenly around the unary input points
(to promote greater entanglement) with requirements -
if switch is on, 16— 3, if switch is off, 16—6. The result
hovered around 5. These failures reduced our enthusiasm
for the unary representation.

4.3 8-bit Gray code

We tried evolving a sine curve using an 8-bit Gray code.
The reason why a Gray code was used instead of a sim-
ple binary code is that the Gray code of adjacent inte-
gers differ by only 1 bit. The most remarkable difference
between the unary code and the Gray code is that the
former has no weights for the output neurons/bits that
comprise the word, increasing the level of redundancy in
the set of representations (i.e. different representations
lead to the same integer, as long the sum of the active
output neurons is the same). On the other hand, the
Gray code is more brittle and has no redundancy. The
advantage of the Gray code is that it is more efficient in
terms of usage of output neurons. When scaling up the
range of the addressable values, the unary code linearly
scales up the number of output neurons, the Gray code
scales up logarithmically. Figure 5 shows an example of a
sinusoidal obtained when using the 8-bit Gray code. We
thought that it was not very successful and subsequently
abandoned using it.

4.4 Spike Interval Coding

We attempted using the ”spike interval coding” the-
ory presented in (Rieke et al. 1997) to evolve sinusoidal
waves, as in the previous experiments.

The procedure for decoding a spike train (the sequence
of 0-1 bits) consists of convoluting it with a special ”con-
volution filter” (See Fig.6). The result obtained is called
the estimated signal, which is a time-dependent sig-
nal that is output from the neural network module to

Figure 5 Example of a sinusoidal signal output by a
neural network using the 8-bit Gray code.

be evaluated in a fitness calculation or to be used in an-
other process. The convolution process is discrete, since
the convolution filter, the spike trains and the results are
discrete. The estimated signal is a digital representation
of an analog signal, sampled at discrete time points, cor-
responding to the clock ticks.

Filter Amplitude

Decoding filter for the spike trains

Figure 6

The convolution process was tried on a single output
of the CoDi neural network modules. The objective was
to minimize the error between the estimated signal and
a sine wave. The solid line in Fig.7 is the target sine
wave, and the dashed line is the obtained wave after 600
generations. The output stream collected from the neu-
ral network modules had a length equal to 300 bits. The
filter used in the convolution process a had length of 150
bits, and the length of the estimated signal was 120 bits.
The population had 30 chromosomes and the CA space
size was 24*24*18. 48 input points (neurons) were cho-
sen from one of the faces of the cubic CA space and were
constantly firing in order to bring a high level of activity
to the module. The output signal was collected from a
point in the opposite face of the inputs. The estimated
signal was normalized, so its discrete time points would
have values of the same order as a unitary sine wave.
The obtained output signals are shown in Figures 7 to
10.

These results are much more encouraging than those
of the other representations. Clearly, the ”spike interval



Figure 7  Single period of a sinusoidal wave generated
using the "spike interval coding”.

Figure 8 Two periods of a sinusoidal wave generated
using the "spike interval coding”.

coding” representation seems more suitable for the CoDi
model. Further investigations in this direction will be
the theme for future work.

5 Conclusions and Future Work

We presented some results using four different represen-
tation schemes. We felt the best results were obtained
with the 4*" “spike interval coding”. The CoDi-1Bit
model appears to have rather good evolvability when it
comes to evolving spike trains from a fixed output point.

Finally, the source code for the CoDi-1Bit neural net
model can be downloaded from de Garis’s web site at

Figure 9 Three periods of a sinusoidal wave generated
using the "spike interval coding”.

Figure 10 Four periods of a sinusoidal wave generated
using the "spike interval coding”.

http://www.hip.atr.co.jp/~degaris. Hopefully other re-
searchers will be inspired by this paper to face the chal-
lenge of successfully evolving CoDi (or other model)
based neural modules. If an artificial brain of a million
modules is to be built, then thousands of human evolu-
tionary engineers (EEs) will be needed. The CAM-Brain
team welcomes collaborators.
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