
ATR's CAM-Brain Machine (CBM) Simulation Resultsand Representation Issues1Norberto Eiji NawaNagoya University & ATR - HumanInformation Processing LaboratoriesSeika-cho, Kyoto, 619-0288, Japanxnawa@hip.atr.co.jpwww.hip.atr.co.jp/�xnawa Hugo de GarisATR - Human InformationProcessing Laboratories,Seika-cho, Kyoto, 619-0288, Japandegaris@hip.atr.co.jpwww.hip.atr.co.jp/�degarisFelix GersIstituto Dalle Molle di Studisull'Intelligenza Arti�ciale,Corso Elvezia 36, CH-6900 LuganoSwitzerlandfelix@idsia.ch, www.idsia.ch/�felix Michael KorkinGenobyte, Inc.1319 Spruce Street, Suite 210 BoulderCO 80302 USAkorkin@genobyte.com, www.genobyte.comABSTRACTThis paper presents some simu-lation results of ATR's new CAM-Brain Machine (CBM), a piece ofFPGA based hardware to be op-erational by the summer of 1998,which will update 3D cellular au-tomata (CA) cells at the incrediblerate of 100 Billion a second, mak-ing possible the evolution of a CAbased neural net module in abouta second (i.e. a complete run ofa genetic algorithm, with tens ofthousands of neural circuit growthsand �tness evaluations). Since theultimate objective of ATR's CAM-Brain Project is the realization ofneural networks modules contain-ing some billion arti�cial neuronsto run in real time, speed is a crit-ical issue. The main objective ofthe experiments presented in thispaper was to gain insights and ex-perience concerning the evolvabil-ity of the CoDi-1Bit model (a sim-pli�ed version of the previous CoDimodel that allows 1 bit neural sig-naling, thus enabling its implemen-1In Koza, J.R, Banzhaf, W, Chellapilla, Deb, K., Dorigo, M.,Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., and Riolo, R.(editors). Genetic Programming 1998: Proceedings of the ThirdAnnual Conference, July 22-25, 1998. University of Wisconsin,Madison, Wisconsin, San Francisco, CA: Morgan Kaufmann

tation in FPGA based hardware)and the new CBM machine. As asubgoal, and no less important, wehave investigated some representa-tion issues, namely how to inter-pret the binary input and outputsignals of neural network modules.This issue is fundamental, since itstrongly in
uences the evolvabil-ity and performance of the wholeCAM-Brain system.1 IntroductionThe CAM-Brain Project at ATR Labs aims to constructa large-scale brain-like neural network system. If theproject succeeds and our expectations are ful�lled, these\arti�cial brains" will have a large number of potentialapplications in several di�erent �elds, from 'smart' do-mestic appliances to speech processing and robot control.We believe that to realize a system that possesses a sim-ilar level of functionality and structural complexity asreal biological brains, the most appropriate way, if notthe only way, is to evolve them, as happened in nature.The fundamental approach of the CAM-Brain Projectis the growth/evolution of large-scale neural networks.Since the dawn of the Project (de Garis 1994), CellularAutomata (CA) have been chosen as the medium to growthe neural networks. CAs meet the requirements of gen-erality and especially scalability, necessary for simulat-ing large-scale systems. Moreover, the parallel nature ofCAs allows its transposition into hardware, where higherspeeds can be achieved. The CA based neural model ini-tially used (de Garis 1996) su�ered from an explosion of



states and transition rules that blocked any attempt toimplement it in hardware. Due to this problem, a newmodel called \CoDi" (from COllect and DIstribute) wasproposed (Gers and de Garis 1996), greatly simplifyingthe system and for the �rst time allowing the implemen-tation of the system in special hardware, namely XC6264FPGAs, which update the CA space at 100 billion cellsa second, and will be able to perform a complete run ofa genetic algorithm (with 10,000s of circuit growths andevaluations) in about a second.Advances in hardware technology led to the develop-ment of devices called Field Programmable Gate-Arrays(FPGAs). FPGAs are hardware devices that can be re-con�gured in run-time to perform di�erent logic func-tions, wedding the 
exibility of software with the speedsof hardware. This motivated the design/construction ofa speci�c computer, called CAM-Brain Machine (CBM)(Korkin et al. 1997), for the evolution of neural networksunder the CoDi model. The CBM will grow 16.000 neu-ral network modules of roughly 10.000 CA cells each, up-dating 100 billion cells/second, a speedup of 500 timescompared to the MIT machine \CAM8" (To�oli andMargolus 1987) that the Project had been using pre-viously to update CA cells quickly.The experiments reported in this paper had as theirmain objective to allow us to gain some insights and ideasconcerning the evolvability of the CoDi-1Bit CA basedneural net model and the CBM. The experiments werenot exhaustively performed. The current simulationswere executed in conventional workstations and laptopsand often took days until convergence was achieved. Thehardware version of the CBM will dramatically decreasethese times, thus facilitating a more complete analysis.Also, we began tackling an issue of great importance,namely, how to interpret the signals that come from theneural networks modules? The CoDi-1Bit model evolvesneural networks whose signals that traverse the connec-tions are digital, i.e. binary 0's and 1's. The questionis, what kind of representations should be used in or-der to extract useful information from the signals outputby the neural networks modules. Simple representationschemes have been tried, with mixed results - some good,some bad. Also, we attempted to apply the theory pre-sented in the book "Spikes: exploring the neural code"(Rieke et al. 1997), which introduces a novel hypothesisto explain how sensory signals are encoded in the actionpotentials that traverse natural neural systems. The ini-tial results obtained are encouraging and indicate that a"spike interval coding" representation might be suitableto be used with the CoDi model.

2 The CoDi-1 Bit Cellular Au-tomata Based Neural NetModelThis section gives an overview of the \CoDi"neural netmodel implemented in the CAM-Brain Machine hard-ware. The model is called \CoDi" due to the \COllectand DIstribute" nature of its neural signals. CoDi isa simpli�ed CA-based neural network model developedat ATR in the summer of 1996 with two goals in mind.One was to make neural network functioning much sim-pler compared to the older CAM-Brain model developedin 1993 and 1994 (de Garis 1993, de Garis 1994), so asto be able to implement the model directly in electron-ics and thus to evolve neural net modules at electronicspeeds.In order to evolve one neural network module, a popu-lation of modules is run through a genetic algorithm forseveral hundred generations. Each module evaluationconsists of growing a new set of axonic and dendritictrees which interconnect the neurons in the 3D cellularautomata space, then running the module to evaluate itsperformance (�tness).The CoDi model (Gers and de Garis 1996) operates asa 3D cellular automata. Each cell is a cube which has sixneighbor cells, one for each of its faces. By loading a dif-ferent phenotype code into a cell, it can be recon�guredas a neuron, an axon, or a dendrite. Neurons are con�g-urable on a coarser grid, namely one per block of 2*2*3CA cells. In a neuron cell, �ve (of its six) connectionsare dendritic inputs, and one is an axonic output. Anaccumulator sums incoming signals and �res an outputsignal when a threshold is exceeded. Each of the inputscan perform an inhibitory or an excitatory function (de-pending on the neuron's chromosome) and either addsto or subtracts from the accumulator. The neuron cell'soutput (axon) can be oriented in 6 di�erent ways in the3D space.A dendrite cell also has maximum �ve inputs and oneoutput, to COllect signals from other cells. The incom-ing signals are passed to the output according to a givenfunction. For instance, if the logic OR function is used,the output is active whenever at least one of the inputsis active. If an XOR function is used, the output is ac-tive when only a single input is active. Two or moreactive inputs block each other. The XOR dendrite ismore plausible from the biological point of view. A sim-ilar phenomenon occurs in real dendrites in animals. Anaxon cell is the opposite of a dendrite. It has 1 inputand maximum 5 outputs, and DIstributes signals to itsneighbors.Before the growth begins, the module space consists ofblank cells, which are used to grow new sets of dendriticand axonic trees during the growth phase. Blank cellsperform no function in an evolved neural network.



As the growth starts, each neuron continuously sendsgrowth signals to the surrounding blank cells, alternat-ing between \grow dendrite" (sent to the neuron's den-dritic connections) and \grow axon" (sent to the axonicconnection). A blank cell which receives a growth sig-nal becomes a dendrite cell, or an axon cell, and fur-ther propagates the growth signal, being continuouslysent by a neuron, to other blank cells. The directionof the propagation is guided by the growth instructionsattached to the cell. These local instructions indicatethe directions that the growth signal should be propa-gated to and consists of a bit for each face of the cubecell. The growth signal is propagated to those directionswhose corresponding bit is set to 1 (except the directionwhere the signal comes from).This mechanism allows the growth of a complex 3Dsystem of branching dendritic and axonic trees, with eachtree having one neuron cell associated with it. The treescan conduct signals between the neurons to perform com-plex spatio-temporal functions. The end-product of thegrowth phase is a phenotype bitstring which encodes thetype and spatial orientation of each cell.3 CAM-Brain Machine (CBM)The CAM-Brain Machine (CBM) was especially de-signed to support the growth and signaling of neural net-works built by the CoDi model in hardware. The CBMshould ful�ll the needs for high speeds, when simulat-ing large-scale binary neural networks, a necessary con-dition when one is concerned with performing real-timecontrol. The hardware core is implemented in Xilinx'sXC6264 FPGA chips, in which the neural networks willactually grow. A host machine will provide the neces-sary interface to interact with the hardware core. It isplanned that the CBM will be used to grow 16,000 neuralnetwork modules, each with approximately 10,000 cells.The modules will be organized into humanly de�ned ar-chitectures, so that neural network modules will be in-terconnected to form a functional unity. This machineshould be built by late summer of 1998, provided that thechips are delivered on time. For a complete descriptionof the CBM, refer to (Korkin et al. 1997).4 Some CBM Simulation ResultsThis section presents some CBM software simulation re-sults using simple representation schemes. When one be-gins evolving CoDi modules, one immediately becomesconscious of the issue of representation. In other words,what meanings should one give to the binary inputsand outputs? We have considered 4 di�erent represen-tations. The �rst representation we tried was to con-sider two output streams tapped from di�erent points,where each time one stream gave a pulse, a counterwas incremented, and each time the other stream gave

a pulse, the counter was decremented. This represen-tation scheme was named "Incrementor/Decrementor"and we evolved a sinusoidal wave this way (See Fig.1).The second representation we tried was what we call"unary", i.e. if there are N input/output neurons thatare �ring at a given instant, then the module is said tobe in/outputting the number \N" at that instant. Wespent some time on the unary representation, because wethought it might be a good candidate for the CBM. Itsadvantage is that a di�erent number can be in/output ateach clock tick, i.e. it is a \fast" representation, whichis important when building arti�cial brains containinglong chains of sequential modules, so as to minimize to-tal reaction time. The third representation we tried was\Gray code", which did not work very well and was aban-doned. Finally, we attempted to apply the theory of theso called \spike interval coding", in which information iscontained in the spacing between pulses. A pulse traincoming from a single output neuron can be convolutedwith an analog \�lter function", to give a highly e�cientmeans to code for complex time dependent analog out-put (Rieke et al. 1997). In the context of the CBM, theidea is to convolute an output series of 0-1 bits with adigitized �lter in order to get the output signal. Thenext four subsections describe the experiments and theresults.4.1 Incrementor/Decrementor Repre-sentationIn this experiment we used a 16*16*16 CA block, with6 �xed inputs constantly �ring at the input face, and 2�xed position outputs at the opposite face. If the �rstoutput bit B1 was a 1 and the second bit B2 was a 0, thena �ctitious counter was incremented by 1. If B1 = 0 andB2 = 1, then the counter was decremented by 1. Othercases left the counter unchanged. An arbitrary sinusoidamplitude and wavelength target shape was chosen thatthe counter is supposed to follow as closely as possible,with the counter value being plotted along the vertical yaxis, and the clock count being plotted along the horizon-tal x axis. The circuit should evolve so that the outputsB1 and B2 change over time, such that the counter givesthe appropriate y values over time.The �tness value was de�ned to be the inverse of thesum of the squares of the di�erences between the de-sired y values and the actual counter values. An in-cremental or stepwise evolutionary approach was takenthat de Garis developed in 1990 (de Garis 1990), namelythat the evolution used several intermediate �tness def-initions, where the resulting population of GA chromo-somes evolved with �tness de�nition FD1, became thestarting generation of chromosomes with �tness de�ni-tion FD2, etc. Often this approach gives better resultsthan using only one �tness de�nition. In the case ofthe sinusoid, at �rst a quarter wavelength was evolved(where the target sinusoid had an amplitude of 20 and



a wavelength of 200 clock ticks), with the whole curveshifted up by 30. The �tness measurement started after20 clocks, at which point, the counter was set initially atthe value 30. After about 100 generations, the evolvedoutput followed the desired target within a few percent.The resulting population became the starting popula-tion for a second evolutionary phase where the aim wasto evolve a half sinusoid. Again, after a day, and severalhundred generations, the actual curve followed the tar-get curve within a few percent. Two further steps wereused, to evolve a three-quarter wave and a full wave. Thethree-quarter wave evolved as well as the previous two,but the full wave did not quite get the actual curve toreturn to the \base line" (set at 30). It looked as thoughthe limits of the evolvability of the 4K CA cell modulehad been reached. An alternative �tness de�nition whichweighted the later clocks was attempted, but had no ef-fect. Fig. 1 shows the result of the full sinusoid, bothtarget and actual output.
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Figure 1 Full Sinusoid, incrementor/decrementor ap-proach.4.2 Unary RepresentationThe unary representation was expected to be less evolv-able than a �xed output position representation. Forexample, imagine we input 30 pulses distributed ran-domly over the input surface, and that at each clocktick, the random positions of the 30 input pulses canchange. (This is needed in case the unary output of onemodule feeds directly into the correspondingly positionedinputs of another unary module). The output positionsat the opposite face can also change randomly (only theirtotal number matters). Thus the unary representationis highly stochastic. Could, nevertheless, a CoDi-1Bitmodule evolve a desired time dependent unary output?Fig. 2 shows such a case. The straight line is the tar-get output. The spiky line is the actual output (unary)over time. One can see that the unary representation isnot bad, but not perfect. It may be adequate for CAM-Brain modules if accuracies do not need to be �ner thansay within 10-20% error. Fig. 3 shows an experimentwhich aimed to achieve the greatest total output count.The greatest density of neurons in the CBM is one per

2*2 surface CA cells, so with a module of dimensions24*24*16, means a maximum possible output of 12*12= 144. Fig. 3 shows that the average maximum out-put was about 108 and the average deviation about thismean value was only about 3, i.e. a noise to signal ratioof about 3%, which was considered to be quite good. Wethen attempted to evolve a unary based sine curve, asshown in Fig. 4 which was a bit scratchy, due to theinevitable stochastic nature of the unary representation.
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Figure 2 Obtained line and target line using unary rep-resentation.
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Figure 3 Maximum output experimentThe dotted line in Fig.4 represents the desired curveand the continuous line is the output. The evolutionwas performed incrementally. First, the �rst quarter ofthe sine, then the �rst and second, etc. as in the incre-mentor/decrementor experiment. Approximately 1000generations were spent in each phase of the process.Encouraged by the above moderate successes usingunary representation, some attempts were made toevolve modules with controllable functions, e.g. an in-verter. Using the same neural circuit, a unary inputof 20 was desired to result in a unary output of 60 andvice versa. This circuit failed to evolve. Once the outputreached about 20 it just hovered there. Instead of 20!60and 60!20, a milder form, 8!16 and 16!8 was tried.This time the average output hovered around 12. Wetried evolving a damper switch. The input surface wasdivided into two halves. In the right hand side, a unaryinput of 16 was placed. In the left hand side, all 72 pos-sible input neurons were all switched on constantly, or
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Figure 4 Example of a sinusoidal signal output by aneural network using the unary code.all switched o� constantly. If the switch was on (i.e. all72 input neurons were �ring) the output was supposedto be 8. If the switch was o� (all 72 input neurons wereo�), the output was supposed to be 16. The output forboth cases (switch on and o�) hovered around 11. Inthe next experiment, the control (switch) input neuronswere distributed evenly around the unary input points(to promote greater entanglement) with requirements -if switch is on, 16!3, if switch is o�, 16!6. The resulthovered around 5. These failures reduced our enthusiasmfor the unary representation.4.3 8-bit Gray codeWe tried evolving a sine curve using an 8-bit Gray code.The reason why a Gray code was used instead of a sim-ple binary code is that the Gray code of adjacent inte-gers di�er by only 1 bit. The most remarkable di�erencebetween the unary code and the Gray code is that theformer has no weights for the output neurons/bits thatcomprise the word, increasing the level of redundancy inthe set of representations (i.e. di�erent representationslead to the same integer, as long the sum of the activeoutput neurons is the same). On the other hand, theGray code is more brittle and has no redundancy. Theadvantage of the Gray code is that it is more e�cient interms of usage of output neurons. When scaling up therange of the addressable values, the unary code linearlyscales up the number of output neurons, the Gray codescales up logarithmically. Figure 5 shows an example of asinusoidal obtained when using the 8-bit Gray code. Wethought that it was not very successful and subsequentlyabandoned using it.4.4 Spike Interval CodingWe attempted using the "spike interval coding" the-ory presented in (Rieke et al. 1997) to evolve sinusoidalwaves, as in the previous experiments.The procedure for decoding a spike train (the sequenceof 0-1 bits) consists of convoluting it with a special "con-volution �lter" (See Fig.6). The result obtained is calledthe estimated signal, which is a time-dependent sig-nal that is output from the neural network module to
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Figure 5 Example of a sinusoidal signal output by aneural network using the 8-bit Gray code.be evaluated in a �tness calculation or to be used in an-other process. The convolution process is discrete, sincethe convolution �lter, the spike trains and the results arediscrete. The estimated signal is a digital representationof an analog signal, sampled at discrete time points, cor-responding to the clock ticks.
0 20 40 60 80 100 120 140 160 180 200

−30

−20

−10

0

10

20

30

40

50

60

70

   

F
ilt

er
 A

m
pl

itu
de

            

Figure 6 Decoding �lter for the spike trainsThe convolution process was tried on a single outputof the CoDi neural network modules. The objective wasto minimize the error between the estimated signal anda sine wave. The solid line in Fig.7 is the target sinewave, and the dashed line is the obtained wave after 600generations. The output stream collected from the neu-ral network modules had a length equal to 300 bits. The�lter used in the convolution process a had length of 150bits, and the length of the estimated signal was 120 bits.The population had 30 chromosomes and the CA spacesize was 24*24*18. 48 input points (neurons) were cho-sen from one of the faces of the cubic CA space and wereconstantly �ring in order to bring a high level of activityto the module. The output signal was collected from apoint in the opposite face of the inputs. The estimatedsignal was normalized, so its discrete time points wouldhave values of the same order as a unitary sine wave.The obtained output signals are shown in Figures 7 to10.These results are much more encouraging than thoseof the other representations. Clearly, the "spike interval
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Figure 7 Single period of a sinusoidal wave generatedusing the "spike interval coding".
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Figure 8 Two periods of a sinusoidal wave generatedusing the "spike interval coding".coding" representation seems more suitable for the CoDimodel. Further investigations in this direction will bethe theme for future work.5 Conclusions and Future WorkWe presented some results using four di�erent represen-tation schemes. We felt the best results were obtainedwith the 4th "spike interval coding". The CoDi-1Bitmodel appears to have rather good evolvability when itcomes to evolving spike trains from a �xed output point.Finally, the source code for the CoDi-1Bit neural netmodel can be downloaded from de Garis's web site at
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Figure 9 Three periods of a sinusoidal wave generatedusing the "spike interval coding".
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